Automatic separation of objects in images containing multiple plankton organisms
Model
Published by
DEEP-Hybrid-DataCloud Consortium
Created:
- Updated:
multi_plankton_separation is an application using the DEEPaaS API.
It provides a trained model to detect each object on multiple plankton images, and return the separation lines.
It is not possible to train a new model with this module.
You can test and execute this module in various ways.
You can run this module directly on your computer, assuming that you have Docker installed, by following these steps:
$ docker pull deephdc/uc-emmaamblard-deep-oc-multi_plankton_separation
$ docker run -ti -p 5000:5000 deephdc/uc-emmaamblard-deep-oc-multi_plankton_separation
If you do not have Docker available or you do not want to install it, you can use udocker within a Python virtualenv:
$ virtualenv udocker
$ source udocker/bin/activate
(udocker) $ pip install udocker
(udocker) $ udocker pull deephdc/uc-emmaamblard-deep-oc-multi_plankton_separation
(udocker) $ udocker create deephdc/uc-emmaamblard-deep-oc-multi_plankton_separation
(udocker) $ udocker run -p 5000:5000 deephdc/uc-emmaamblard-deep-oc-multi_plankton_separation
In either case, once the module is running, point your browser to
http://127.0.0.1:5000/
and you will see the API
documentation, where you can test the module functionality, as well as
perform other actions (such as training).
For more information, refer to the user documentation.